منابع مشابه
Quantum Liouville Theory in the Background Field Formalism I. Compact Riemann Surfaces
Using Polyakov’s functional integral approach and the Liouville action functional defined in [ZT87c] and [TT03a], we formulate quantum Liouville theory on a compact Riemann surface X of genus g > 1. For the partition function 〈X〉 and correlation functions with the stress-energy tensor components 〈n i=1 T (zi ) ∏l k=1 T̄ (w̄k)X〉, we describe Feynman rules in the background field formalism by expan...
متن کاملTouching random surfaces and Liouville gravity.
Large N matrix models modified by terms of the form g(TrΦn)2 generate random surfaces which touch at isolated points. Matrix model results indicate that, as g is increased to a special value gt, the string susceptibility exponent suddenly jumps from its conventional value γ to γ γ−1 . We study this effect in Liouville gravity and attribute it to a change of the interaction term from Oeα+φ for g...
متن کاملSuper Liouville action for Regge surfaces
We compute the super Liouville action for a two dimensional Regge surface by exploiting the invariance of the theory under the superconformal group for sphere topology and under the supermodular group for torus topology. For sphere topology and torus topology with even spin structures, the action is completely fixed up to a term which in the continuum limit goes over to a topological invariant,...
متن کاملSuper-liouville Equations on Closed Riemann Surfaces
Motivated by the supersymmetric extension of Liouville theory in the recent physics literature, we couple the standard Liouville functional with a spinor field term. The resulting functional is conformally invariant. We study geometric and analytic aspects of the resulting Euler-Lagrange equations, culminating in a blow up analysis.
متن کاملLiouville Theory: Quantum Geometry of Riemann Surfaces
Inspired by Polyakov’s original formulation [1, 2] of quantum Liouville theory through functional integral, we analyze perturbation expansion around a classical solution. We show the validity of conformal Ward identities for puncture operators and prove that their conformal dimension is given by the classical expression. We also prove that total quantum correction to the central charge of Liouv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Mathematical Society of Japan
سال: 1991
ISSN: 0025-5645
DOI: 10.2969/jmsj/04330555